Τρίτη, 29 Μαρτίου 2016

Τα πλησιέστερα άστρα στον Ήλιο μας


Tο επόμενο διάγραμμα περιέχει την ονομασία τους, τον φασματικό τύπο και την απόστασή τους από τη Γη (το πιο κοντινό είναι το Άλφα του Κενταύρου σε απόσταση 4, 37 έτη φωτός):

Κυριακή, 20 Μαρτίου 2016

Το Hubble ανακάλυψε άστρα-τέρατα


με μάζα 100 φορές μεγαλύτερη από του Ήλιου




H κεντρική περιοχή του νεφελώματος Ταραντούλα στο μεγάλο νέφος του Μαγγελάνου. Το νέο αστρικό σμήνος R136 βρίσκεται στο κάτω δεξιό μέρος της εικόνας.

Μια διεθνής ομάδα αστρονόμων ανακάλυψε εννέα άστρα-τέρατα, τα οποία έχουν μάζα πάνω από 100 φορές μεγαλύτερη από αυτή του Ήλιου και τα οποία ανήκουν στο ίδιο σμήνος άστρων. Η ανακάλυψη έγινε με τη βοήθεια του διαστημικού τηλεσκοπίου «Χαμπλ».
Τα τεραστίων διαστάσεων άστρα ανήκουν σε ένα νεανικό αστρικό σμήνος με την ονομασία R136, το οποίο είναι το μεγαλύτερο σμήνος κολοσσιαίων άστρων, που έχει ανακαλυφθεί μέχρι σήμερα. Βρίσκεται στο Νεφέλωμα Ταραντούλα, μέσα στο Μεγάλο Μαγγελανικό Νέφος, σε απόσταση περίπου 170.000 ετών φωτός από τη Γη.
Οι ερευνητές, με επικεφαλής τον καθηγητή Πολ Κράουδερ του Τμήματος Φυσικής και Αστρονομίας του βρετανικού Πανεπιστημίου του Σέφιλντ, έκαναν τη σχετική δημοσίευση στο περιοδικό «Monthly Notices» της Βασιλικής Εταιρείας Αστρονομίας της Βρετανίας.
Τα εννέα άστρα-τέρατα, εκτός από το εντυπωσιακό μέγεθός τους, είναι τόσο λαμπερά, που από κοινού η λάμψη τους είναι 30 εκατομμύρια φορές πιο φωτεινή από τον Ήλιο.


Το 2010, η ίδια ερευνητική ομάδα είχε εντοπίσει μέσα στο ίδιο αστρικό σμήνος τέσσερα τεράστια άστρα, με μάζα το καθένα 150 φορές μεγαλύτερη του Ήλιου. Η νέα έρευνά τους έρχεται τώρα να προσθέσει πέντε ακόμη, που έχουν το καθένα πάνω από 100 ηλιακές μάζες, ανεβάζοντας τον συνολικό αριθμό σε εννέα.
Όμως παρά τη νέα ανακάλυψη, δεν καταρρίφθηκε το ρεκόρ του μεγαλύτερου γνωστού άστρου στο Σύμπαν, του R136a1, που είναι τουλάχιστον 250 φορές μεγαλύτερο από τον Ήλιο.
Στο ίδιο σμήνος οι επιστήμονες εντόπισαν δεκάδες ακόμη πολύ μεγάλα άστρα, με μάζες πάνω από 50 φορές μεγαλύτερες του Ήλιου. Οι επιστήμονες δεν είναι σίγουροι μέσω ποιων μηχανισμών δημιουργήθηκαν τόσα πολλά μεγάλα άστρα στο ίδιο νεανικό σμήνος.
imerisia.grphys.org physicsgg

Δευτέρα, 14 Μαρτίου 2016

Ο διανοούμενος Einstein Ένας μοναχικός ταξιδευτής του Σύμπαντος


Ο Albert Einstein (Ulm 14 Μαρτίου 1879 – Princeton 18 Απριλίου 1955), μια από τις πιο δημιουργικές διάνοιες της ανθρώπινης ιστορίας, έμεινε στην ιστορία ως ένας μύθος της επιστήμης αλλά και ως η συνείδηση της επιστήμης χάρη στο βαθύ ανθρωπισμό και τη στράτευσή του υπέρ της ειρήνης, της συναδέλφωσης των λαών, της προάσπισης της ελευθερίας και τον αγώνα του για την κοινωνική δικαιοσύνη.





Θα αρχίσουμε, με ένα κλασικό ερώτημα: Ποιά είναι η θέση του επιστήμονα στην κοινωνική πραγματικότητα της εποχής του; Μέσα στη στρατοκρατική νοοτροπία, που ολοένα αυξάνεται; Στην παραπληροφόρηση του κοινού; Στην φτώχεια και στην πείνα; Στον πόλεμο και στην τρομοκρατία;

Στα πλαίσια αυτά αναγκαστικά, θα πρέπει να αναφέρουμε τον Albert Einstein, πρώτα σαν διανοούμενο και μετά σαν επιστήμονα. Ή και τα δύο μαζί. Γιατί στη ζωή του δεν ξεχωρίζουν. Είναι αλληλένδετες οι δράσεις του σαν επιστήμονα και σαν σκεπτόμενου άνθρώπου.

Δυστυχώς στην σημερινή εποχή δεν βλέπουμε συχνά Νομπελίστες επιστήμονες να γυρίζουν την υφήλιο με σκοπό την ειρήνη, την συνάδελφωση των λαών και την εξάλειψη της φτώχειας. Σήμερα η μεγάλη μάζα των διανοουμένων στον δυτικό κόσμο είναι σε μεγάλο βαθμό εξαρτημένη από την εξουσία ή τις επιχειρήσεις. Δεν υπάρχουν πια οι μεγάλοι διανοούμενοι-επιστήμονες που με τις πράξεις τους θα σηκώσουν το βάρος μιας εκστρατείας κατά της ανισότητας ή της ειρήνης. Η περίπτωση όμως του Einstein είναι ξεχωριστή και άξια μίμησης για τους σημερινούς επιστήμονες.

Αλλά το δράμα της ζωής του Einstein έγκειται, ίσως, σε τούτο: Ήταν ένας πραγματικός διανοούμενος, όπως τον όρισε ο Ζαν Πωλ Σάρτρ, που θεωρούσε τον εαυτό του ταγμένο να εργάζεται στο επιστημονικό πεδίο αυξάνοντας όμως αθέλητά του την στρατιωτική δύναμη των ισχυρών, αλλά από την άλλη να καταγγέλλει τις αδικίες, τον πόλεμο, τον μιλιταρισμό, τον ιμπεριαλισμό των ισχυρών δυνάμεων. Όπως έλεγε και ο ίδιος η ζωή του ήταν «μοιρασμένη ανάμεσα στην πολιτική και τις εξισώσεις».

Κατατρωγόταν από αντιφατικά συναισθήματα. Θεωρούσε τον εαυτό του, ένα ταξιδευτή του σύμπαντος, ένα επιστήμονα που εργάζεται για το καλό της ανθρωπότητας, έναν ουμανιστή, που έβλεπε τις αδικίες και κατήγγειλε συνειδητά την πορεία των πραγμάτων: την άνοδο του χιτλερισμού, την αδυναμία των μεγάλων να εξαλείψουν την πείνα, την δυστυχία, τον ψυχρό πόλεμο.

Δυστυχώς, δεν μπόρεσε όμως να θωρακίσει ψυχικά τον εαυτό του από τα φοβερά γεγονότα που συνέβησαν στον κόσμο, το πρώτο ήμισυ του 20ου αιώνα, γι’ αυτό και αργότερα απομονώθηκε στον εαυτό του και στην αντιμετώπιση των συνεπειών της κβαντικής θεωρίας, που και ο ίδιος συνέβαλε στην ανάπτυξη της, χωρίς όμως επιτυχία.

Σχεδόν άθελά του, από τις αρχές του ’30, είχε αποδεχτεί ότι είχε μια «παθιασμένη αίσθηση της κοινωνικής δικαιοσύνης και της κοινωνικής ευθύνης του». Συμμετείχε σε διεθνή forum για την ειρήνη, για μια παγκόσμια κυβέρνηση, τον αντιμιλιταρισμό, την ελευθερία των λαών αλλά και την ίδρυση ενός εβραϊκού κράτους, χωρίς να είναι φανατικός εβραίος.

Αλλά όταν το 1952 του πρόσφεραν την προεδρία του κράτους του Ισραήλ αρνήθηκε λέγοντας «Οι εξισώσεις για μένα έχουν μεγαλύτερο ενδιαφέρον, η πολιτική είναι για το παρόν, οι εξισώσεις είναι για την αιωνιότητα».

Κατά τη διάρκεια του Πρώτου Παγκόσμιου Πολέμου, δραστηριοποιήθηκε σε αντιπολεμικές διαδηλώσεις. Προσκαλούσε τον κόσμο σε απείθεια και άρνηση στράτευσης. Μάλιστα επειδή πολλοί συνάδελφοι του συμμετείχαν ενεργά υπέρ του πολέμου, δεν έχαιρε γι’ αυτό και μεγάλης εκτίμησης. Μετά τον πόλεμο, οι δράσεις που ανέλαβε υπέρ της συμφιλίωσης των λαών και της ενεργού δράσης της Κοινωνίας των Εθνών, ήταν αιτία να δυσκολεύεται ακόμη και να επισκέπτεται τις Ηνωμένες Πολιτείες για επιστημονική ενημέρωση.

Οι απόψεις του αυτές επηρεάστηκαν σε μεγάλο βαθμό από τον Γάλλο ειρηνιστή και συγγραφέα Romain Rolland, με τον οποίο συναντήθηκε σε μια επίσκεψή του στην Ελβετία, κατά τη διάρκεια του πολέμου.

Ήταν Γερμανός την καταγωγή και Εβραίος, αλλά δεν ένιωθε ούτε Γερμανός, εξ’ αιτίας του μιλιταριστικού της πνεύματος, αλλά ούτε και φανατικός Εβραίος, εξ’ αιτίας της άρνησης του να πιστέψει την εικόνα του Θεού όπως τον περιέγραφαν τα κείμενα της Παλαιάς Διαθήκης. Όπου πήγαινε: Πράγα, Βερολίνο κλπ το φάντασμα του Εβραίου τον καταδίωκε. Αλλά βαθμιαία, οι αντιδράσεις αυτές τον έκαναν να προσεγγίσει την Ισραηλιτική Κοινότητα και να δίνει αργότερα (μετά τον Β! Παγκόσμιο Πόλεμο) μάχες για την ίδρυση του κράτους του Ισραήλ.

Μιλώντας στη Γαλλική Φιλοσοφική Εταιρεία το 1922, ο Αϊνστάιν έλεγε: «Αν η θεωρία μου για τη σχετικότητα αποδειχθεί επιτυχής, η Γερμανία θα με διεκδικεί ως Γερμανό και η Γαλλία θα διακηρύσσει ότι είμαι πολίτης του κόσμου. Αν τυχόν η θεωρία μου αποδειχθεί αναληθής, η Γαλλία θα λέει ότι είμαι Γερμανός και η Γερμανία θα διακηρύσσει ότι είμαι Εβραίος»

Λένε ότι κάποτε όταν του παρουσίασαν ένα βιβλίο με τίτλο «Εκατό συγγραφείς κατά του Einstein», είπε: «Αν είχα κάνει λάθος, ένας συγγραφέας θα ήταν αρκετός».

Σε μια ανταλλαγή επιστολών με τον Αυστριακό Ψυχίατρο Sigmund Freud, ο Einstein υπέδειξε ότι ο κόσμος πρέπει να έχει μια έμφυτη, άκρατη επιθυμία για μίσος και καταστροφή. Ο Φρόϋντ συμφώνησε προσθέτοντας ότι ο πόλεμος είναι ένα βιολογικό σύνδρομο εξαιτίας των ενστίκτων αγάπης-μίσους των ανθρώπων και ότι η ειρήνη είναι μια ιδιοσυγκρασία που σχετίζεται άμεσα με τον υψηλό βαθμό πολιτιστικής ανάπτυξης του Einstein . Αυτή η ανταλλαγή επιστολών δεν ήταν παρά ένας μόνο από τους πολλούς φιλοσοφικούς διαλλόγους του Einstein με φημισμένους ανθρώπους της εποχής του.

Συμπαραστεκόμενος στον Γκάντι, υπέγραψε το 1925 τη διακήρυξη εναντίον της υποχρεωτικής στρατιωτικής θητείας σε όλο τον κόσμο.

Όταν ανέβηκε στην εξουσία ο Χίτλερ, ο Einstein ήταν στην Αμερική για διαλέξεις. Μία από τις πρώτες του ενέργειες ήταν να καταθέσει την Γερμανική υπηκοότητά του. Κράτησε όμως την Ελβετική και ζήτησε και την Αμερικανική. Καθώς ο Χίτλερ δήμευε το σπίτι του, τα βιβλία του, τις καταθέσεις του υπήρχαν άνθρωποι που ένιωθαν χαρά γι’ αυτό. Μια εφημερίδα του Βερολίνου μάλιστα έγραψε «Καλά Νέα από τον Einstein, δεν επιστρέφει από την Αμερική».

Ο μεγάλος Δανός ατομικός φυσικός Niels Bohr έφερε το 1939 στον Einstein την είδηση ότι η Γερμανίδα πρόσφυγας φυσικός Lise Meitner είχε διασπάσει το άτομο του ουρανίου με μικρή απώλεια μάζας που είχε μετατραπεί σε ενέργεια. Τα πειράματα, που πραγματοποίησε στην Κοπενγχάγη, είχε εμπνευστεί η Meitner από όμοια, αν και λιγότερο αξιόπιστα, που είχαν γίνει μερικούς μήνες νωρίτερα από δύο Γερμανούς χημικούς, τους Otto Hahn και Fritz Strassmann στο Βερολίνο, Ο Bohr έκανε τη σκέψη ότι. αν μπορούσε να πραγματοποιηθεί μια ελεγχόμενη αλυσιδωτή αντίδραση σχάσεως ατόμων ουρανίου, το αποτέλεσμα θα ήταν μια έκρηξη μαμούθ. Ο Einstein δυσπιστούσε σε μια τέτοια δυνατότητα, τα εργαστηριακά όμως πειράματα στις Ηνωμένες Πολιτείες απέδειξαν το εφικτό της ιδέας.

Αλλά πριν τον πόλεμο επιστήμονες σαν τον Fermi, τον Teller, τον Ουγγρο Szilard αλλά και άλλοι, τρομερά ανήσυχοι για την δυνατότητα των πυρηνικών εκρήξεων που μόλις είχαν ανακαλύψει, προσπάθησαν να έλθουν σε επαφή με την Αμερικανική Κυβέρνηση, για να της εξηγήσουν ότι πρέπει να προλάβουν τους Γερμανούς πριν φτιάξουν τις δικές τους ατομικές βόμβες. Αλλά μάταια, οι Αμερικανοί δεν έδιναν σημασία. Έπεισαν λοιπόν τον Einstein, να έλθει σε επαφή αυτός με τον Πρόεδρο Ρούζβελτ των ΗΠΑ. Ο Einstein που φοβόταν και αυτός για την έκβαση του πολέμου που φαινόταν να έρχεται και ότι πιθανόν οι Γερμανοί επιστήμονες να ανακάλυπταν την Ατομική Βόμβα πριν από τους Αμερικανούς, έγραψε τελικά στις 2 Αυγούστου του 1939, μια ιστορική επιστολή, εξηγώντάς στον Ρούζβελτ ότι θα πρέπει οι Αμερικανοί να δημιουργήσουν τη δική τους βόμβα, με το σχέδιο που ονομάστηκε Μανχάταν.

Αν και δεν πήρε μέρος στην εργασία που γινόταν στο Λος Άλαμος του Νέου Μεξικού και δεν έμαθε ότι είχε κατασκευαστεί βόμβα πυρηνικής σχάσεως μέχρις ότου έπεσε η πρώτη βόμβα στη Χιροσίμα το 1945, το όνομα του είχε συνδεθεί στενά με τον ερχομό της ατομικής εποχής. Η μεγάλη ειρωνεία γι’ αυτόν τον ιδεαλιστή διανοούμενο, ήταν ότι χάρις στο φημισμένο αξίωμά της ισοδυναμίας μάζας-ενέργειας, η ανθρωπότητα γνώρισε την εφαρμογή του, με τη δημιουργία ατομικών και υδρογονικών βομβών, δηλαδή των πιο καταστρεπτικών όπλων που γνώρισε ποτέ η ανθρωπότητα.

Ανήσυχος όμως, πριν να ρίξουν οι Αμερικανοί την ατομική βόμβα, έστειλε άλλο ένα γράμμα στον Ρούζβελτ ζητώντας του να μην την ρίξει και προειδοποιώντας δημόσια για τους κινδύνους που έρχονται για την ανθρωπότητα.

Η θεωρία της Σχετικότητας τον έκανε γνωστό στο ευρύ κοινό αν και αποτελούσε μυστήριο για την πλειοψηφία του κόσμου. «Γιατί άραγε ενώ δεν με καταλαβαίνει κανείς, με συμπαθούν όλοι;» είχε διερωτηθεί σε συνέντευξή του στην εφημερίδα The New York Times τον Μάρτιο του 1944.

Χαρακτηριστικές είναι οι απόψεις του για την θρησκεία


«Η επιστήμη κατηγορήθηκε για κατώτερη ηθικότητα, αλλά αυτή η κατηγορία είναι άδικη. Η ηθική συμπεριφορά του ανθρώπου μπορεί να βασίζεται αποτελεσματικά στην συμπάθεια, στην ανατροφή και στους κοινωνικούς δεσμούς, δεν είναι απαραίτητη η θρησκευτική βάση. Θα ήταν σίγουρα πολύ μικρόχαρος ο άνθρωπος που θα περιοριζόταν από το φόβο και την τιμωρία ή την ελπίδα της μετά θάνατον ανταμοιβής».


«Μόνο το κοσμικό θρησκευτικό συναίσθημα είναι το ισχυρότερο και ευγενέστερο κίνητρο για την επιστημονική έρευνα. Η θρησκεία των απλών ανθρώπων είναι διαφορετική από των επιστημόνων. Για τους απλούς ανθρώπους ο Θεός είναι ένα Όν που ελπίζουν να επωφεληθούν από την καλοσύνη του, και που φοβούνται την τιμωρία του».


«Το θρησκευτικό όμως συναίσθημα των επιστημόνων παίρνει τη μορφή ενός παράφορου θαυμασμού του φυσικού νόμου που αποκαλύπτει μια ανώτερη διάνοια.»


«Πιστεύω στον θεό του Σπινόζα, που αποκαλύπτει τον εαυτό του στη σοφή αρμονία του κόσμου, και όχι σ` έναν θεό που ασχολείται με τις τύχες και τις πράξεις των ανθρώπων».


«Θέλω να ξέρω τις σκέψεις του Θεού. ΄Ολα τα άλλα είναι λεπτομέρειες».


«Δεν υπάρχει τίποτα το θεϊκό στην ηθική. Είναι μια καθαρά ανθρώπινη υπόθεση».


Αρνούμενος σαφώς τον αθεϊσμό, ο Einstein διατύπωνε μια πίστη στον «Θεό του Σπινόζα που αποκαλύπτει τον εαυτό του στην αρμονία του όλων όσων υπάρχουν στον Κόσμο»

Σταχυολογούμε μερικές άλλες ρήσεις του


«Η επαφή με το μυστήριο είναι η ωραιότερη εμπειρία του ανθρώπου».


«Αν είχα καταλάβει από πριν την έννοια του χρόνου, θα είχα γίνει ωρολογοποιός».


«Πιστεύω πως η αγάπη είναι πολύ καλύτερος δάσκαλος από την αίσθηση καθήκοντος».


«Δεν ενδιαφέρομαι για διδακτορικά… τη βαρέθηκα όλη αυτή την κωμωδία».


«Για να με τιμωρήσει για την περιφρόνησή μου στις αυθεντίες, η μοίρα έκανε κι εμένα μια αυθεντία».


«Η πραγματική αξία της ανθρώπινης ύπαρξης καθορίζεται βασικά από το μέτρο και την αίσθηση που ο ίδιος έχει για τον εαυτό του».


«Μόνο αν ζεις για τους άλλους αξίζει να ζεις».


«Αν δεν υπάρχει τίμημα δεν υπάρχει και αξία».


«΄Οσο περισσότερα όπλα κατασκευάζει μια χώρα τόσο πιο ανασφαλής γίνεται: όταν κατέχεις όπλα αποτελείς στόχο επίθεσης».


«Ο Θεός είναι πολυμήχανος αλλά όχι κακεντρεχής».


«Η επιστήμη θα λιμνάσει αν δημιουργείται για να υπηρετεί ρεαλιστικούς σκοπούς».


«Η φύση κρύβει τα μυστικά της επειδή είναι μεγαλειώδης, όχι επειδή είναι κατεργάρα».


«Ποτέ μην κάνεις κάτι εναντίον της συνείδησης σου ακόμη και αν το απαιτεί το κράτος».


«Το αιώνιο μυστήριο του κόσμου είναι η δυνατότητα κατανόησής του. Το γεγονός ότι ο κόσμος είναι κατανοητός, αποτελεί θαύμα».


«Απεχθάνομαι το συνδυασμό εκλεπτυσμένης ευφυΐας και ανήθικου χαρακτήρα».


«΄Οπου υπάρχει αγάπη, δεν υπάρχει επιβολή».


«΄Οποιος δεν ξεγελάστηκε ποτέ από ένα ψέμα, δεν γνωρίζει τι θα πει μακαριότητα».


«Ο γάμος είναι σκλαβιά που την έκαναν να φαίνεται εκλεπτυσμένη»…


Η επαφή με το μυστήριο είναι η ωραιότερη εμπειρία του ανθρώπου.


Τι ξέρει το ψάρι για το νερό, που μέσα του περνά ολόκληρη τη ζωή του;


Η απάντηση είναι «ναι» ή «όχι», ανάλογα με την ερμηνεία.


Αν είχα καταλάβει από πριν την έννοια του χρόνου, θα είχα γίνει ωρολογοποιός.


Δεν μπορώ να πιστέψω πως ο θεός παίζει ζάρια στο Σύμπαν.


Πιστεύω πως η αγάπη είναι πολύ καλύτερος δάσκαλος από την αίσθηση καθήκοντος.


Δεν έχω κανένα ιδιαίτερο ταλέντο. Απλώς, είμαι με πάθος περίεργος.


Δεν ενδιαφέρομαι για διδακτορικά… τη βαρέθηκα όλη αυτή την κωμωδία.


Για να με τιμωρήσει για την περιφρόνησή μου στις αυθεντίες, η μοίρα έκανε κι εμένα μια αυθεντία.


Πιστεύω στο θεό του Σπινόζα, που αποκαλύπτει τον εαυτό του στη σοφή αρμονία του κόσμου, και όχι σ’ έναν θεό που ασχολείται με τις τύχες και τις πράξεις των ανθρώπων.


Στη διάρκεια της ζωής μου έμαθα ένα πράγμα: Ότι όλη μας η επιστήμη, σε σύγκριση με την πραγματικότητα, είναι πρωτόγονη και παιδαριώδης – αλλά παρόλ’ αυτά είναι το πιο πολύτιμο πράγμα που έχουμε.


Παρασκευή, 11 Μαρτίου 2016

Quasars, οι μυστηριώδεις φάροι





Καλλιτεχνική απεικόνιση του quasar ULAS J1120+0641. Πρόκειται για το μακρινότερο σήμερα quasar (12,9 δισεκατομμύρια έτη φωτός) που περιέχει μια μελανή οπή (μαύρη τρύπα) μάζας 2 δισεκατομμυρίων ηλιακών μαζών

ΚΑΝΑΡΗΣ ΤΣΙΓΚΑΝΟΣ(*)
To πλούσιο σε φυσικά φαινόμενα Σύμπαν μάς επιφυλάσσει ανεξάντλητες εκπλήξεις. Σπάνια οι αστροφυσικοί μπόρεσαν να προβλέψουν τα ιδιαίτερα ασυνήθιστα –για εμάς τους μικροσκοπικούς γήινους– φαινόμενα που συμβαίνουν στο Σύμπαν. Η πρόβλεψη της ύπαρξης του ηλιακού ανέμου, δηλαδή της ροής εκατομμυρίων τόνων ιονισμένου αερίου ανά δευτερόλεπτο με την οποία η ηλιακή ατμόσφαιρα «λούζει» το αχανές Διάστημα, ίσως είναι μια από τις ελάχιστες περιπτώσεις όπου η θεωρία προηγήθηκε της παρατήρησης. Τις περισσότερες όμως άλλες φορές οι θεωρητικοί αστροφυσικοί απλά προσπαθούμε εκ των υστέρων να εξηγήσουμε τις αινιγματικές παρατηρήσεις των παρατηρησιακών αστρονόμων, όταν αυτές έχουν ήδη πραγματοποιηθεί.

Η ανακάλυψη των quasars το 1963 είναι μια τέτοια περίπτωση. Σε αυτούς συμβαίνουν πρωτοφανή, αινιγματικά και ανήκουστα σε εμάς φαινόμενα, όπως, μια εκτυφλωτική φωτεινότητα που είναι ισοδύναμη αυτής εκατοντάδων γαλαξιών όλων μαζί «στριμωγμένων» μέσα σε μια «μικρή» περιοχή όσο το πλανητικό μας σύστημα, τερατώδεις μαύρες τρύπες δισεκατομμυρίων ηλιακών μαζών που λουφάζουν στο κέντρο τους και «καταβροχθίζουν» χιλιάδες αστέρια κάθε έτος, σχετικιστικοί πίδακες ιονισμένου αερίου που αναβλύζουν από αυτές τις μαύρες τρύπες και σχηματίζουν λαμπρούς κόμβους που «φαίνονται» συχνά να κινούνται με ταχύτητες που υπερβαίνουν ακόμη και την ταχύτητα του φωτός, βαρυτικοί φακοί (όπως ο «σταυρός του Einstein»), αλλά και άλλα ακραία φυσικά φαινόμενα που συμβαίνουν σε αυτά τα ιδιόμορφα αστρονομικά αντικείμενα, που ευρίσκονται κυρίως στις εσχατιές του γνωστού μας Σύμπαντος. Ας δούμε όμως καταρχήν πώς ανακαλύφθηκαν.

Ο πρώτος ραδιογαλαξίας εντοπίστηκε το 1939

Η ενέργεια κοσμικής προέλευσης που φθάνει στη Γη στα ραδιοκύματα είναι εξαιρετικά ασθενική. Για παράδειγμα, όλη η ενέργεια που έχει μέχρι σήμερα συλλεγεί από όλα τα ραδιοτηλεσκόπια δεν υπερβαίνει αυτήν που ελευθερώνει μία νιφάδα χιονιού όταν διασχίζει την ατμόσφαιρα και πέφτει στο έδαφος. Το 1932, ένας Αμερικανός φυσικός-ηλεκτρολόγος μηχανικός στα Εργαστήρια της Bell Telephone, ο Καρλ Τζάνσκι, κατασκεύασε την πρώτη ραδιοφωνική κεραία που χρησιμοποιήθηκε για την ανίχνευση μιας αστρονομικής πηγής ραδιοκυμάτων, προπάτορας των σημερινών «πιάτων» τηλεόρασης. Ο Τζάνσκι αναζητούσε πηγές ραδιοθορύβου που θα ήταν δυνατό να επηρεάζουν την ασύρματη επικοινωνία, κάτι που ενδιέφερε την Bell. Η πρώτη τέτοια πηγή που εντόπισε ήταν στην κατεύθυνση του αστερισμού του Τοξότη, όπου βρίσκεται το κέντρο του Γαλαξία μας. Στη συνέχεια, ο Τζάνσκι πρότεινε στα Bell Labs την κατασκευή μιας ευαίσθητης αντένας 30 μέτρων που όμως δεν έγινε δεκτή, με το σκεπτικό ότι αυτή δεν θα ήταν χρήσιμη για τις διατλαντικές τηλεπικοινωνίες και μετατέθηκε σε άλλο τμήμα της εταιρείας, παρά το γεγονός ότι η ανακάλυψή του εμφανίστηκε στους «New York Times» στις 5 Μαΐου του 1933!

Στη συνέχεια, ο Β΄ Παγκόσμιος Πόλεμος ευνόησε την ανάπτυξη της ραδιοαστρονομίας, ιδιαίτερα στην Αγγλία. Ετσι, μέχρι το 1950 οι ραδιοαστρονόμοι είχαν ήδη κατασκευάσει ευαίσθητα ραδιοτηλεσκόπια και είχαν δημιουργήσει εκτεταμένες λίστες ραδιοπηγών. Ο πιο γνωστός κατάλογος ήταν ο 3C του Cambridge. Πολλές ραδιοπηγές αντιστοιχούσαν σε μακρινούς γνωστούς γαλαξίες. Αλλες όχι.

Στον αστερισμό του Κύκνου, που μεσουρανεί το καλοκαίρι ως μέρος του «θερινού τριγώνου», εντοπίσθηκε το 1939 ο πρώτος ραδιογαλαξίας (Κύκνος Α) σε απόσταση περί τα 600 εκατομμύρια έτη φωτός και είναι ορατός και στο οπτικό μέρος του φάσματος. Το περίεργο όμως με τον Κύκνο Α, αλλά και τους άλλους ραδιογαλαξίες ήταν ότι η ραδιοεκπομπή τους προέρχεται από δύο ραδιολοβούς που απέχουν περί τα 300.000 έτη φωτός αναμεταξύ τους (δέκα φορές μακρύτερα από τους εξωτερικούς αστέρες του γαλαξία). Aργότερα ανακαλύφθηκε ότι οι λοβοί αυτοί τροφοδοτούνταν από δύο πολύ λεπτούς πίδακες (βλ. εικόνα) που προέρχονται από έναν ιδιαίτερα συμπαγή πυρήνα ανάμεσά τους, όπου λουφάζει μια θηριώδης μελανή οπή με μάζα περί το ένα δισεκατομμύριο ηλιακές μάζες. Η μεταβλητότητα δε της εκπομπής αυτής στις υψηλές ενέργειες είναι της τάξης των ωρών, ή και λεπτών.

Η συναρμολόγηση ενός δύσκολου παζλ

Ο ακριβής ραδιοεντοπισμός όμως των ραδιογαλαξιών δεν ήταν εύκολος, γι’ αυτό οι ραδιοαστρονόμοι επινόησαν διάφορους έξυπνους τρόπους. Ενας εξ αυτών ήταν η επιπρόσθεση της Σελήνης στη ραδιοπηγή, της οποίας η εκάστοτε θέση στον ουρανό είναι γνωστή με μεγάλη ακρίβεια και όταν παρεμβάλλεται στην κατεύθυνση της ραδιοπηγής κόβει την ακτινοβολία της και έτσι μας δίνει την ακριβή της θέση.

Έτσι, μετά τη μέτρηση των ακριβών συντεταγμένων αρκετών ισχυρών ραδιοπηγών, το επίκεντρο για την εξήγησή τους βρέθηκε στο Πανεπιστήμιο της Καλιφόρνιας Caltech. Οι αστροφυσικοί εστίασαν την προσοχή τους σε δύο ισχυρές πηγές του καταλόγου 3C, τους 3C 273 και 3C 48 οι οποίοι φαίνονταν να συμπίπτουν στον ουρανό με δύο σημειακούς μπλε αστέρες. Γι’ αυτό και τους ονόμασαν quasars, σύντμηση της φράσης «quas (i-stell)ar radio source». ‘Ομως, μέχρι τότε δεν είχαν ανακαλυφθεί αστέρες να εκπέμπουν στα ραδιοκύματα, με την εξαίρεση του Ηλιου που η εκπομπή του ωστόσο είναι τόσο ασθενής ώστε δεν θα ήταν ανιχνεύσιμη σε μεγάλες εξωγαλαξιακές αποστάσεις. Εμπειροι αστρονόμοι έλαβαν τα φάσματα αυτών των σημειακών πηγών με το μεγαλύτερο τότε παγκόσμια διαθέσιμο τηλεσκόπιο των 5,1 μέτρων στο Palomar που λειτουργεί το Caltech. Προς μεγάλη τους έκπληξη όμως διαπίστωσαν ότι οι γραμμές εκπομπής τους δεν μπορούσαν να αντιστοιχηθούν με αυτές κάποιου χημικού στοιχείου του γνωστού μας περιοδικού πίνακα. Ήταν γραμμές κάποιου νέου χημικού στοιχείου; Προέρχονταν από κάποιο νέο και εξωτικό είδος ραδιοάστρου μέσα στον Γαλαξία μας ή, ήταν εξωγαλαξιακά αντικείμενα; Μια μεγάλη προσπάθεια χωρίς να λείπουν και οι διαμάχες ξεκίνησε ανάμεσα στους αστρονόμους για να λύσουν αυτό το αίνιγμα.

Η λύση του αινίγματος

Τα διασκορπισμένα κομμάτια του παζλ τελικά συναρμολόγησε επιτυχώς ένας νεαρός Ολλανδός αστροφυσικός το 1963, ο Maarten Schmidt, ο οποίος αφού εκπόνησε τη διατριβή του με την επίβλεψη του διάσημου αστρονόμου Oort το 1956 στο αστεροσκοπείο του Leiden, μετακόμισε στο Caltech τo 1959. Εκεί, το καθαρό μυαλό του παρατήρησε κάτι πολύ απλό: ότι οι τέσσερις εντονότερες γραμμές εκπομπής του 3C 273 είχαν την ίδια σχετική απόσταση ανάμεσά τους με τις πασίγνωστες αλλά θεμελιώδεις γραμμές του ατόμου του Υδρογόνου. Μόνο που τα μήκη κύματος που εμφανίζονταν στο φάσμα της ραδιοπηγής ήταν μετατοπισμένα προς το ερυθρό κατά ένα σημαντικό ποσοστό, περί το 16%! Αν αυτή η μετατόπιση οφειλόταν στο φαινόμενο Doppler, τότε σήμαινε ότι το αντικείμενο αυτό απομακρυνόταν από εμάς με ταχύτητα 45.000 χιλιομέτρων το δευτερόλεπτο, ή 1,6 δισεκατομμυρίων χιλιομέτρων την ώρα! Οι ίδιες γραμμές στο φάσμα του 3C 48 ήταν μετατοπισμένες προς το ερυθρό ακόμη περισσότερο και η ραδιοπηγή απομακρυνόταν με τη διπλάσια ταχύτητα αυτής του 3C 273. Οι αστροφυσικοί έμειναν έκθαμβοι προσπαθώντας να κατανοήσουν πώς είναι δυνατόν να απομακρύνονται από εμάς αυτά τα αντικείμενα με ταχύτητες πολλών δισεκατομμυρίων χιλιομέτρων την ώρα.

Με επιπλέον συστηματική παρατήρηση και συστηματική ανάλυση, ο Schmidt και οι συνεργάτες του έδειξαν ότι οι 3C 48 and 3C 273 δεν ήταν ακριβώς σημειακές πηγές, αλλά καθεμιά τους περιβαλλόταν από μια θαμπή άλω. Αυτή η άλως υπεδείκνυε ότι εκεί υπήρχε κάποιος μακρινός γαλαξίας. Σύμφωνα δε με τον νόμο διαστολής του Hubble’s που συνδέει απόσταση και ταχύτητα σε γαλαξίες, αυτά τα αινιγματικά αντικείμενα ευρίσκονταν σε αποστάσεις δισεκατομμυρίων ετών φωτός, δηλαδή το φως τους ταξίδεψε δισεκατομμύρια έτη φωτός για να φθάσει σε εμάς!

Ο Schmidt απέδειξε έτσι ότι οι quasars δεν ήταν ραδιοαστέρες αλλά οι πιο μακρινοί ραδιογαλαξίες στο Σύμπαν. Και για να έχουν φαινόμενη αστρική φωτεινότητα σε αυτές τις τεράστιες αποστάσεις, πρέπει να έχουν εξαιρετικά μεγάλη ιδιοφωτεινότητα. Περαιτέρω, αν η άλως προέρχεται από το φως του περιβάλλοντος μακρινού γαλαξία, τότε η λαμπρή καρδιά του εκπέμπει πολύ ισχυρότερη ακτινοβολία. Τότε όμως, τι είδους φαινόμενα συμβαίνουν στον πυρήνα αυτού του γαλαξία ώστε να εκπέμπει εκατοντάδες φορές τη φωτεινότητα ενός γαλαξία; Όπως συνήθως συμβαίνει στην έρευνα, η λύση ενός αινίγματος οδηγεί στην εμφάνιση άλλων! Σήμερα γνωρίζουμε χιλιάδες quasars. Ο μακρινότερος που έχει εντοπιστεί ώς τώρα, ευρίσκεται σε απόσταση από την οποία το φως ταξίδεψε 12,9 δισεκατομμύρια έτη, δηλαδή περί τα 800 εκατομμύρια έτη μετά τη γέννηση του Σύμπαντος στη Μεγάλη Εκρηξη (Big Bang).

Προκαλούν εξωτικά φυσικά φαινόμενα

Οι βαρυτικοί φακοί είναι μία πρόβλεψη της Γενικής Θεωρίας της Σχετικότητας που έγινε από τον Einstein το 1912, πριν από τη δημοσίευση της Γενικής Θεωρίας της Σχετικότητας το 1916, κατά την οποία όταν το φως μιας φωτεινής πηγής διέρχεται από το ισχυρό βαρυτικό πεδίο ενός Γαλαξία ή μελανής οπής (βαρυτικός φακός), οι φωτεινές ακτίνες κάμπτονται, δημιουργώντας έναν κυκλικό δακτύλιο –όταν το quasar, ο παρατηρητής και ο φακός είναι ευθυγραμμισμένοι– ή κάποιο άλλο σχήμα, όταν δεν είναι, π.χ. ένας σταυρός. Ο Einstein το 1936 σημείωσε ότι το φαινόμενο αυτό δεν είναι παρατηρήσιμο. Λάθος του (και ο Αϊνστάιν έκανε λάθος προβλέψεις). Σήμερα, ωστόσο, γνωρίζουμε εκατοντάδες βαρυτικούς φακούς στην Αστροφυσική που συνδέονται με μακρινούς quasars. Για παράδειγμα, ο «σταυρός του Αϊνστάιν» είναι ένα quasar που με τη βοήθεια ενός ενδιάμεσου βαρυτικού φακού δίδει ένα τετραπλό είδωλο, σχηματίζοντας έναν σχεδόν τέλειο σταυρό (εξ ου και το όνομά του), με τον ενδιάμεσο γαλαξία να παίζει τον ρόλο του φακού στο κέντρο του. Το quasar αυτό βρίσκεται περίπου 8 δισεκατομμύρια έτη φωτός από τη Γη, ενώ ο γαλαξίας-φακός βρίσκεται σε απόσταση 400 εκατομμυρίων ετών φωτός.

Στα quasars παρατηρούμε και το φαινόμενο της υπέρφωτης κίνησης, κατά το οποίο έχουμε φαινομενική κίνηση κάποιων νεφών πλάσματος που παρατηρούνται να κινούνται με ταχύτητες μεγαλύτερες εκείνης του φωτός στο κενό. Η υπέρφωτη κίνηση εξηγείται όμορφα (βλ. Καν. Τσίγκανος, Αστροφυσική Πλάσματος, σελ. 445, 2015) και οφείλεται σε φαινόμενα προβολής και όχι σε παραβίαση της Θεωρίας της Σχετικότητας, σύμφωνα με την οποία η μέγιστη ταχύτητα με την οποία μπορεί να μεταδοθεί πληροφορία είναι η ταχύτητα του φωτός. Βασικά απαιτεί σχετικιστική κίνηση σχεδόν προς την κατεύθυνση του παρατηρητή.

Επίλογος

Όσο περισσότερα γνωρίζουμε για το Σύμπαν, τόσο περισσότερα αινίγματα αναφύονται και επομένως τόσο λιγότερο το κατανοούμε. Ατέρμονη η διαδικασία. Ωστόσο, είναι μια αληθινά μεγαλειώδης διαδικασία, γιατί ο μικρός και «εφήμερος» άνθρωπος τόσο περισσότερο πλησιάζει τον Νου του Δημιουργού του Σύμπαντος. Για παράδειγμα, και μόνο το γεγονός ότι σήμερα παρατηρούμε περίπου το 4% της ύλης που περιέχει το Σύμπαν, ενώ το υπόλοιπο 26% και 70% και μόνο από την ονομασία του «σκοτεινή ύλη» και «σκοτεινή ενέργεια», αντίστοιχα, υποδηλώνει ότι έχουμε κυριολεκτικά «σκοτεινά μεσάνυχτα», αγνοώντας το μεγαλύτερο μέρος της σύστασής του. Αυτό και βέβαια έχει σημαντικές προεκτάσεις και στην ανθρώπινη πνευματική στάση: Όσο περισσότερο κατανοούμε τη ζωή, τόσο λιγότερο παντογνώστες φαινόμαστε και τόσο περισσότερο εχέφρονες, σωστοί πολίτες και άνθρωποι αναδεικνυόμαστε. Ιδιαίτερα στη χώρα μας!

* Ο κ. Κανάρης Τσίγκανος είναι καθηγητής της Θεωρητικής Αστροφυσικής στο Πανεπιστήμιο Αθηνών και διευθυντής του Εθνικού Αστεροσκοπείου Αθηνών (Αστροφυσική Πλάσματος: http://eclass.uoa.gr/courses/PHYS135/)

πηγή: kathimerini.gr